226 research outputs found

    Tracking A Dynamic Sparse Channel Via Differential Orthogonal Matching Pursuit

    Full text link
    This paper considers the problem of tracking a dynamic sparse channel in a broadband wireless communication system. A probabilistic signal model is firstly proposed to describe the special features of temporal correlations of dynamic sparse channels: path delays change slowly over time, while path gains evolve faster. Based on such temporal correlations, we then propose the differential orthogonal matching pursuit (D-OMP) algorithm to track a dynamic sparse channel in a sequential way by updating the small channel variation over time. Compared with other channel tracking algorithms, simulation results demonstrate that the proposed D-OMP algorithm can track dynamic sparse channels faster with improved accuracy.Comment: Conference: Milcom 2015 Track 1 - Waveforms and Signal Processing - IEEE Military Communications Conference 201

    Soft Pilot Reuse and Multi-Cell Block Diagonalization Precoding for Massive MIMO Systems

    Full text link
    The users at cell edge of a massive multiple-input multiple-output (MIMO) system suffer from severe pilot contamination, which leads to poor quality of service (QoS). In order to enhance the QoS for these edge users, soft pilot reuse (SPR) combined with multi-cell block diagonalization (MBD) precoding are proposed. Specifically, the users are divided into two groups according to their large-scale fading coefficients, referred to as the center users, who only suffer from modest pilot contamination and the edge users, who suffer from severe pilot contamination. Based on this distinction, the SPR scheme is proposed for improving the QoS for the edge users, whereby a cell-center pilot group is reused for all cell-center users in all cells, while a cell-edge pilot group is applied for the edge users in the adjacent cells. By extending the classical block diagonalization precoding to a multi-cell scenario, the MBD precoding scheme projects the downlink transmit signal onto the null space of the subspace spanned by the inter-cell channels of the edge users in adjacent cells. Thus, the inter-cell interference contaminating the edge users' signals in the adjacent cells can be efficiently mitigated and hence the QoS of these edge users can be further enhanced. Our theoretical analysis and simulation results demonstrate that both the uplink and downlink rates of the edge users are significantly improved, albeit at the cost of the slightly decreased rate of center users.Comment: 13 pages, 12 figures, accepted for publication in IEEE Transactions on Vehicular Technology, 201

    Adaptive hybrid precoding for multiuser massive MIMO

    No full text
    Hybrid precoding (HP) is widely utilized in millimeter wave-based massive MIMO systems with significantly reduced radio frequency (RF) chains, but it requires a large number of analog phase shifters (APSs) and RF adders to realize the connection between RF chains and antenna elements. In this letter, an adaptive hybrid precoding (AHP) is proposed to approach the performance of the conventional HP with reduced complexity. Different from the conventional HP where each antenna is connected to all RF chains through APSs and RF adders, the proposed AHP connects each antenna with only one RF chain through an adaptive connection network. This adaptive connection network and the phases of APSs are jointly designed, which is formulated as an optimization problem to maximize the users' average downlink achievable rate. Moreover, a multiuser adaptive analog precoding (MU-AAP) algorithm is proposed to provide a near-optimal solution to this joint-design problem. Simulation results verify the performance gain of the proposed AHP in typical multiuser massive MIMO scenario

    MATLABER: Material-Aware Text-to-3D via LAtent BRDF auto-EncodeR

    Full text link
    Based on powerful text-to-image diffusion models, text-to-3D generation has made significant progress in generating compelling geometry and appearance. However, existing methods still struggle to recover high-fidelity object materials, either only considering Lambertian reflectance, or failing to disentangle BRDF materials from the environment lights. In this work, we propose Material-Aware Text-to-3D via LAtent BRDF auto-EncodeR (\textbf{MATLABER}) that leverages a novel latent BRDF auto-encoder for material generation. We train this auto-encoder with large-scale real-world BRDF collections and ensure the smoothness of its latent space, which implicitly acts as a natural distribution of materials. During appearance modeling in text-to-3D generation, the latent BRDF embeddings, rather than BRDF parameters, are predicted via a material network. Through exhaustive experiments, our approach demonstrates the superiority over existing ones in generating realistic and coherent object materials. Moreover, high-quality materials naturally enable multiple downstream tasks such as relighting and material editing. Code and model will be publicly available at \url{https://sheldontsui.github.io/projects/Matlaber}

    Efficient coding schemes for low‐rate wireless personal area networks

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/166246/1/cmu2bf01608.pd

    HyperStyle3D: Text-Guided 3D Portrait Stylization via Hypernetworks

    Full text link
    Portrait stylization is a long-standing task enabling extensive applications. Although 2D-based methods have made great progress in recent years, real-world applications such as metaverse and games often demand 3D content. On the other hand, the requirement of 3D data, which is costly to acquire, significantly impedes the development of 3D portrait stylization methods. In this paper, inspired by the success of 3D-aware GANs that bridge 2D and 3D domains with 3D fields as the intermediate representation for rendering 2D images, we propose a novel method, dubbed HyperStyle3D, based on 3D-aware GANs for 3D portrait stylization. At the core of our method is a hyper-network learned to manipulate the parameters of the generator in a single forward pass. It not only offers a strong capacity to handle multiple styles with a single model, but also enables flexible fine-grained stylization that affects only texture, shape, or local part of the portrait. While the use of 3D-aware GANs bypasses the requirement of 3D data, we further alleviate the necessity of style images with the CLIP model being the stylization guidance. We conduct an extensive set of experiments across the style, attribute, and shape, and meanwhile, measure the 3D consistency. These experiments demonstrate the superior capability of our HyperStyle3D model in rendering 3D-consistent images in diverse styles, deforming the face shape, and editing various attributes

    Adaptive Hybrid Precoding for Multiuser Massive MIMO

    Full text link
    corecore